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This study explores student understanding of the table of values representation for the function 
concept. One hundred and seventy eight students in Years 8, 9 and 10 across three schools in 
Melbourne undertook two pen-and-paper tests which sought to uncover the nature of the links 
students made between different representational forms for function. For the table of values 
representation there are many students who are operating in an arithmetic or pre-algebraic frame 
across the three year levels. There are low levels of response for algebraic patterning and 
indications that most students are at a rhetorical or syncopated stage of symbolism. 

The Function Concept: Understanding of Symbols and Structure 
The function concept is a crucial one in secondary school mathematics as it can be seen as 
a unifying idea throughout the algebra curriculum. The function concept ultimately requires 
the student to understand structure. This conceptual understanding requires a significant 
step from numerical processing and it is the bridge between arithmetic and algebra that is a 
focus of different introductory perspectives to school algebra. The four representations for 
function promoted in current curricula involve natural language description, symbolic, 
graph, and table of values representations. These representations and translations between 
them were the focus of a larger study, but only student understanding of the table of values 
representation is reported here. 

Through the use of symbols in algebra a dexterity Qf thought becomes possible, where 
mental objects can be manipulated, or can be held suspended and unresolved, at will. The 
compactness of symbol for idea in algebra is similar to word symbols in language but the 
special syntax and grammar of algebra are not always intuitive and thus present a cognitive 
leap for the student (Herscovics, 1989; Kaput, 1989). Symbolisation requires formal levels 
of thought and the encapsulation or reification o/processes as objects requires a major step 
forward from arithmetic thought (Harel & Dubinsky, 1992). 

In moving from arithmetic to algebra the student needs to transform implicit 
knowledge of rules and structure into explicit knowledge. Making an idea explicit (or 
explicitation in van Hiele's terms) requires abstraction, a use of symbol to represent classes 
of objects, and a new syntax of expression. This may be difficult for students. 
From Arithmetic to Algebraic Thinking . 
An idea and its symbol are subject to separation. Such detachment is a powerful 
achievement of symbolic algebra, yet it is a trap for the learner. That the ubiquitous x has 
flexible meaning causes confusion too for the beginner. Is it a number, any number, a set of 
numbers, or all numbers? Can we work with it when we do not know its value? Once x 
becomes a conceptual entity in itself, detached from known number, the learner has 
algebraic power of compression of representation, and can manipulate the mental and 
written objects according to accepted algebraic rules, and can then return and reattach 
meaning within the context of a problem. 

The flexibility of thought required here is considerably greater than in arithmetic, 
which has been the grounding for the beginning algebra student. The arithmetic frame is 
usually strongly established and the imperatives of student processing behaviour in 
arithmetic are different in nature to that required in algebra. To think algebraically is 
distinctly different to thinking arithmetically, yet in the transition to algebraic thinking use 
of the arithmetic frame and generalisation from arithmetic behaviour is sensible. 

Generalisation is seen to be the defining characteristic in the shift from an arithmetic 
perspective to an algebraic perspective: generalising numerical patterns is at the heart of 
early algebra (Sfard, 1995). Consideration of numerical patterning in arithmetic and 
geometry are often seen as an intuitive root for the beginning algebra student (Bell, 1988; 
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Mason, 1996) and current curriculum statements are drawn to them as suitable starting 
points (Australian Education Council, 1991; National Council of Teachers of Mathematics, 
1989). A notion of variability is also a significant stepping stone essential for algebraic 
understanding. These two concepts, generality and variability, embody the structural 
perspective that is the essence of algebra. 

The function concept draws together the key concepts of variability and generality. 
The study of relations between variables is a prime focus of algebra. The dependency 
relationship can be demonstrated in different ways: expressed compactly by a symbolic rule 
or formula, particularised in a numerical table of values, or visualised in a graph. 
The Search for Pattern: Generality and Variability 
While the Australian curriculum document A National Statement on Mathematics for 
Australian Schools (AEC, 1991) states that "(m)athematics brings to the study of patterns 
an efficient and powerful notation for representing generality and variability, and for 
reducing complexity - algebra" (p. 187), the table of values representation for function is 
not promoted explicitly in any of the sub-strands as a medium for understanding the basic 
concepts of algebra, namely generality and variability. 

The different representations for the function concept listed in the AEC document 
each have their own structure and therefore require a different perspective of the student. 
This study sought broadly to answer the questions: (1) What is the nature of student 
understanding of the function concept? (2) What is the nature of student understanding of 
each of the representations for function? (3) What connections are made across the 
representations? (4) What are the implications of the findings for teaching? 

With these broad questions in mind the role of verbal description (so-called natural 
language) and understanding of the tabular representation for function were seen to be of 
particular interest in the light of limited related research. Calls for building on student 
numerical patterning skills for introductory algebra (AEC, 1991) suggested that an 
examination of that ability and its relation to algebraic development was required. 
Natural Language, Table of Values and Symbolic Algebra 
In order to capture the underlying function rule for a table of values a student may use a 
natural language description, for example 'double the number and add one' or 'add four to 
the number'. In attempting to move the student to symbolic language the classroom teacher 
may temporarily use syncopated algebra where symbols abbreviate the inputs and outputs 
and the mapping is made more explicit: 'the output is four more than the input' to ' y is 4 
more than x' to 'y is x plus 4'. Thus the relationship of input-output is moved (subtly) from 
comparison to process. The syncopated algebra, 'y is x plus 4', is sometimes used as a 
transitional language in the development of symbolic algebra 'y = x + 4'. (From this point 
in the discussion 'natural language' will refer to this syncopated algebra common. to 
classroom dialogue in the introductory stages of algebra.) 

The historical role of rhetorical algebra (prose) and, more particularly, syncopated 
algebra in the evolution of symbolic algebra (Harper, 1987) demonstrated that there were 
significant mental stumbling blocks in moving from the cumbersome prose form of 
description to a fully symbolised algebra where new mental objects serve to compress both 
context and operation (Kleiner, 1989). 

The table of values is less flexible and compact form than the symbolic form, yet its 
structure and syntax, too, need to be understood. It does not capture generality, but lists 
examples of numerical values paired under the functional relationship. The organisation 
and relationships of the parts of the table and its structure are different again to both natural 
language and symbolic algebra. The student is required to identify a set of x, a set of y, and 
to decipher an ordered set of arithmetical operations between a pair of x and y which holds 
for all x and y pairs. The generality is implied in that the relationship should also hold for 
extrapolation and interpolation under a relevant domain set. 
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For algebraic understanding of y = x + 4 the student must merge both structural 
conception and process into a conceptual entity - an algebraic procept - and be able to 
think flexibly so that either concept or process can be invoked as required (Gray & Tall, 
1994): the duality of the function concept must be managed as a dichotomy of relationship 
and process at will. The student requires flexibility of perspective. Similarly, for the table 
of values the student needs to develop a proceptual view of the table as both relationship 
and process. 
Research Methodology and the Test Items 
For this study two written tests were formulated to investigate student understanding of key 
sub-concepts of the function concept across the four representations. The first test focussed 
on the table of values representation for function and the second test focussed on the 
graphical representation for function. The overall context for both tests was the linear 
function. The year levels chosen for study were years 8, 9, and 10 in secondary schools. 
The tests were undertaken at the end of the school year in October, November and 
December, and the age range of the students was 13 to 16 years of age. A sample of 178 
students across years 8, 9, and 10 in three schools was considered to be appropriate to 
capture a representation of the most common responses to the test items. Each of 9 class 
groups was visited twice in their own school environment and each class was asked to 
complete two written tests each of one hour duration over a period of 4 to 6 weeks. The 
schools in the sample came from the government school sector in the Australian State of 
Victoria and had quite different profiles in terms of students and academic resources. This 
sample was designed to provide a variety of responses from a broad spectrum of students' 
progress in understanding the function concept. The three participating schools provided a 
broad sample of Victorian students in terms of background, achievement and 
opportunity. The test items discussed here were designed to reveal students' understanding 
of functions represented in tables. Students were asked to state a relationship or rule 
between the numbers in the x and y columns of the given tables, firstly in natural language 
(Da), then in algebraic form (Db), and lastly to supply y values for given x values (Dc). 
These items were designed to assess: (1) Which structural features of a mathematical table 
of values are recognised by students? (2) What patterns are seen by students and which 
ones are debilitating in attaining an algebraic view? (3) Whether some students are in a 
rhetorical stage of symbolism, (4) Which rules present a more difficult translational task, 
and (5) What are the error phenomena? 

D4 
x Y 
1 3 
2 5 
3 7 
5 11 

Ca) Describe the relationship or rule 
between the numbers in the x and y 
columns in words: 

(b) The rule is y = 

(c) If these also belonged to the table, fill 
in the correct y values to match the x 
values. 

x Y 
-1 
0 
10 

Figure 1. Items Da4, Db4, Dc4 
The sequence of linear functions in section D was: (DI) y = x + 3, (D2) y = 4x, (D3) y 

= x, (D4) y = 2x + 1, (D5) y = 5 - x, and (D6) y = x - 5. Items Dl, D2, D3 and D6 are uni
operational functions in the sense that one arithmetical operation is performed on the 
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independent variable, and numbers D4 and D5 are bi-operational in the sense that two 
operations are performed on the independent variable. The six linear functions for Da, Db 
and Dc were chosen to represent suspected different levels of difficulty. The first four 
questions (D1 to D4) all had x = 1, 2, 3, 5 in the initial table with their matching y values. 
The omission of x = 4 was meant to break the pattern of x-change in case a vertical cue was 
being used by the student. The last two questions (D5 and D6) had a different sequence of 
the independent variable values: D5 had x = 1, 2, 3, 4 to monitor the effect of the 
distracting pattern in the y column and D6 had x = 7, 4, 2, 1 to monitor the effect of a 
decreasing change in the x values. 
Analysis 

In the analysis of student responses a tree diagram was used to show the connections 
and stumbling blocks between the three tasks of each item of section D. The numbers in 
the tree diagram below (Figure 2) represent the numbers of students correct (c) or not 
correct (nc) for each task of D4. Thus the left-most path in the tree diagram labelled as path 
(1,1,1) represents those students who successfully responded to all tasks (verbal - Da4, 
algebraic - Db4 and numeric - Dc4). The next path in the sieve, labelled as (1,1,0), 
represents those students who were correct on both Da4 and Db4 but not correct on Dc4. 

One interesting path through different patterning abilities is detailed by arrows in the 
figure. This path, described as path (0,0,1), represents those students who were 
unsuccessful in both Da4 (verbal description) and Db4 (symbolic algebraic description), 
but were successful in Dc4 (numeric patteming). These students perhaps had some strategy 
other than verbal description or algebraic description which allowed them to respond 
correctly on the final task. The path is characterised as 'successful inarticulate patterning'. 

The eight paths are characterised as: (1,1,1) successful articulate algebraic patteming; 
(1,1,0) unsuccessful articulate algebraic patterning; (1,0,1) successful rhetorical patteming; 
(1,0,0) unsuccessful rhetorical patteming; (0,1,1) successful articulate algebraic patteming; 
(0,1,0) unsuccessful articulate algebraic patteming; (0,0, 1) successful inarticulate 
patteming; (0,0,0) non-patterning. (Path (0,1,1) is characterised in the same way as (1,1,1): 
successful articulate algebraic patteming. Similarly, path (0,1,0) is characterised in the 
same way as (1,1,0): unsuccessful articulate patteming. The assumption is made that 
natural language description ability is subsumed in algebraic description ability.) 

D4 

Da4 Verbal 
c 

Db4 Algebraic 30 
c nc 

Dc4 Numeric n 
19 11 

178 

correct (c) 

41 137 
nc c 

11 6 131 
c nc c nc nc 

nn 
3 8 5 1 4 127 

Path (1,1,1) (1,1,0) (1,0,1) (1,0,0) (0,1,1) (0,1,0) (0,0,1) (0,0,0) 

Figure 2. Numbers of students successful on each task of item D4, y = 2x + 1 
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In all six questions it appears that there are students who can complete a table of 
values and yet are not able to correctly express the underlying function in natural language 
or symbolic language. Their path is characterised above as 'successful inarticulate 
patterning' (0,0,1). For this group the pattern within the table is accessible in some other 
way. Table 1 below indicates the number of students in this category for the different table 
functions. 

Item . Table function Number of students 
(n = 178) 

Dl y=x+3 n 
D2 y = 4x 10 
D3 y=x 15 
D4 y =2x + 1 4 
D5 y=5-x 19 
D6 Y = x-5 12 

Table 1. 'Successful inarticulate patterning' for different functions 
The three tasks in each item were used to form three scales and a reliability analysis 

was undertaken on SPSS (no. of items = 6, no. of cases = 178) for each of the scales. 
Statistical analysis shows that there is a strong positive correlation for each item with Scale 
Da (except for item DaS where there is a weak positive correlation). That is the items 
contribute reliably to the scale measure Da of 'verbal patterning ability' (Cronbach-alpha = 
0.777). There is a strong positive correlation for each item with Scale Db (except for item 
Db5 where there is a weak positive correlation). That is the items contribute reliably to the 
scale measure Db of 'algebraic patterning ability' (Cronbach-alpha = 0.851). There is a 
strong positive correlation for each item with Scale Dc (except for item Dc5 where there is 
a weak positive correlation). That is the items contribute reliably to the scale measure Dc of 
'numeric patterning ability' (Cronbach-alpha = 0.786). 

The D5 items had the weakest positive correlations with each of the three scales. The 
table function for these items was y = 5 - x. This function can be seen to be different from 
the others in its presentation: the given table is shown in Figure 3 below. The entries as 
given proved to be overwhelming distracters from the (horizontal) function pattern where 
students were drawn rather to the vertical patterns in the x and y columns. 

The down/up parallel patterning distracter in item Dc5 resulted in 12.4% of students 
responding as shown in Figure 3 below for y = 5 - x. This response is a non-algebraic 
mapping where students have disregarded the concept of correspondence between 
variables. 

x y 

1 4 ~~ 

° 2 3 • 5 
3 2 

7 
I" 4 1 ,t 

Figure 3. Item Dc5: Parallel table patterning 
Facility and En-or Types 

7 ~~ 

5 

° 

Verbal patterning: As shown in Table 2 below the functions in order of ease of verbal 
description were y = x, y = x + 3, y = 4x, Y = x - 5, y = 2x + 1, y = 5 - x. For translation from 
table to verbal description, the identity function is the easiest, and the additive function is 
easier than the multiplicative function. The uni-operational functions are easier than the bi
operational functions. 

496 



Item Function Facility (% ) Error types 
Dal 
Da2 
Da3 
Da4 
Da5 
Da6 

y=x+3 
Y = 4x 
y=x 

60.7 
46.6 
62.9 

reversal 
reversal 

Y =2x + 1 23.0 horizontal additive patterning 
y = 5 - x 2.8 down/up parallel patterning 
y = x - 5 34.3 reversal 

Table 2. Facilities and error types for 'verbal patteming ability' 
The identity function (Da3) was variously described correctly as (y is) 'the same' (as 

x) or 'one times', the additive function was described correctly as 'add 3', the 
multiplicative function mostly described as y is '4 times' x but a small number of students 
used a (correct) notion of double add double, that is y = 2.x + 2.x. The subtractive function 
was mostly described as 'take away 5'. The much harder bi-operational function, y = 2x + 
1, (facility 23%) was described mostly as 'double and add 1', but it was susceptible to 
incorrect horizontal additive patterning. The 12.4% of students who were drawn to this 
patterning described the relationship or rule between the numbers in the x and y columns in 
terms of a sequence of additions between each of the four pairs of (x, y) given, that is 'add 
2, add 3, add 4, add 6'. They were unable to translate this to either algebraic rule or apply it 
correctly to the table items in Dc4. Thus a dependence on an additive perspective of table 
patteming constitutes a cognitive obstacle. 

The most difficult function to describe verbally was y = 5 - x (facility 2.8%). The 
function is bi-operational in terms of 'add 5 to the negative of x', however it was expected 
that most students would describe the relationship as 'x plus y is 5'. This was not the case. 
As discussed above there was a powerful distracter at work. 27.0% of students (across all 
year levels) who were drawn to the vertical down-up parallel pattern of the x and y 
columns. 
Algebraic patterning: There was also a very small number of students (n = 6) who 
reversed the relationships. This was pertinent to items Dal, Da2, and Da6. The other type 
of error for verbal items was reference to the vertical patterning of the table in terms of the 
incremental additive change in x and y. Apart from the 48 students (27%) drawn to this 
patteming for y = 5 - x discussed above, there were 11 students who used the same strategy 
on other tables as well. Of these 11 students, 5 of them were only correct in the 
identification of the identity function and the additive function, but incorrect for all other 
tables, while the other 6 were incorrect on all other items. Their usage of this vertical 
additive patterning then can be seen to be persistent and debilitating. 

The items of Db(l-6) constituted a reliable scale measure of 'algebraic patteming 
ability' as indicated above. As shown in Table 3 below the functions in order of ease of 
algebraic description is the same order as for 'verbal patteming ability'. The most difficult 
function to describe algebraically was y = 5 -x. This item had a dramatically poor facility 
of 2.3% with most students omitting it. As discussed in the previous section relating to 
verbal patterning the problem lay in the distraction of the parallel reverse patterning in the 
x and y columns. ---------------------------------------------------

Item Function Facility (%) Error types 
Db 1 y = x + 3 39.3 verbal, process 
Db2 y = 4x 36.0 verbal, process 
Db3 y = x 47.2 verbal, process 
Db4 y =2x + 1 20.2 verbal, single pair 
Db5 y = 5 - x 2.3 verbal, process 
Db6 y = x - 5 27.5 verbal, process 
Table 3. Facilities and error types for algebraic patterning ability 
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The largest numbers of incorrect responses were from students who gave a verbal rule 
without algebraic symbolism. The next largest group attempted algebraic symbolism but 
failed to include the independent variable in the statement. This group concentrated on the 
process or action. For y = x + 3, 12.9% of students wrote y = +3, or y = 3 times larger; for y 
= 4x, 7.3% of students wrote y = multiply by 4 or y = 4; for y = x, 8.4% of students wrote y 
= 0, or y = +0, or y = 1, or y =xl; for y = 5 - x, 2.8% of students wrote y = 5; and for y = x-
5, 5.6% wrote y = 5 or -5. 

A small number of students (5.1 %) drew algebraic patterning from a single pair of 
data for the bi-operational function y = 2x + 1. Here the algebraic rule was given as y = x + 
2, or y = +2, or y = 2. Students here noticed that the elements of the fIrst pair in the table 
(1, 3) had a difference of 2. The numbers of reversals in algebraic patterning were minimal. 
Numeric patterning: The items of Dc(I-6) constituted a reliable scale measure of 'numeric 
patterning ability' as indicated. As shown in Table 4 below the functions in order of ease of 
verbal description is almost the same order as for verbal and patterning abilities with DcI 
and Dc3 interchanged. However, the facilities for numeric patterning are higher than for the 
previous abilities except for question D4. 

Item Function Facility (%) 
Dc 1 Y = x + 3 74.2 
Dc2 Y = 4x 49.4 
Dc3 y=x 70.8 
Dc4 Y =2x + 1 17.4 
Dc5 y = 5 - x 12.9 

Error types 

arithmetic structure mapping, zero, -1 

arithmetic structure mapping, zero, -1 
arithmetic structure mapping, down/up 
parallel patterning 

Dc6 y = x - 5 41.6 arithmetic structure mapping 
Table 4. Facilities and error types for 'numeric patterning ability' 
The responses here uncovered further detail of students' patterning perspectives as 

some students mapped an 'arithmetic structure' from the initial table to the new entries 
rather than the function structure. For example, for y = 2x + 1 some students (11.2%) 
extracted the table pattern as +2, +3, +5 from the first three entries, and mapped this on to 
the new entries giving (-1, 1), (0, 3), and (10, 14), or extracted the pattern as +2 from the 
rIrst pair to give (-1, 1), (0, 2), and (10, 12). These students have failed to recognised the 
underlying algebraic structure of the table and have taken no account of the order of the 
entries or correspondence of the variables. 

Conclusions 
The research questions considered the connections students make between the table, 

natural language and symbolic algebra. The analysis here indicated that many students did 
not recognise the structural features of the mathematical table of values for the linear 
functions used here. What were termed as 'an arithmetic structure mapping', 'a vertical 
additive patterning' and 'a horizontal additive patterning' indicated a non-recognition that 
two sets of values of corresponding variables were co-related in the same way - that there 
was a generality of correspondence. Students who responded with these perspectives can 
be seen to be responding pre-algebraically. 

The parallel patterning behaviour in D5 dramatically showed that other patterns in 
tables are a distraction if an algebraic view is not strongly established. Similarly a vertical 
additive patterning which paid attention to incremental change on x and y without 
recognition of correspondence was demonstrated as persistent and debilitating. 

A trace of the various paths for successful and unsuccessful translations between the 
three tasks showed that there were substantial numbers of students who were not able to 
supply algebraic symbolism but who were strong on verbal and numeric patterning ability. 
These students came from all the year levels. Their responses were termed 'successful 
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rhetorical patterning'. Their responses on the algebraic tasks were sometimes partially 
symbolised thus constituting a syncopated stage of symbolism. 

There were students who were able to supply the numeric values but who were unable 
to express the pattern of the table verbally or algebraically. Their responses were termed 
'successful inarticulate patterning' and students exhibiting this response were found to be 
persistent in this response type. There were also large numbers of responses termed 'non
patterning' indicating that for many students the function concept is not established at all. 
Reversal errors occurred in all translations but were most common in the verbal description 
of the table pattern. There were problems with processing zero and negative one in the 
numeric supply tasks. Arithmetic perspectives for table patterning were indicated in the 
three translations in drawing the table pattern from one pair of data, from vertical 
patterning alone, or from a sequence of operations. These errors can be seen to arise from 
an action or process conception of function (Harel & Dubinsky, 1992). 
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